Fuzzy clustering methods for the segmentation of multimodal medical images
نویسندگان
چکیده
Multimodal medical imaging (MMI) volumes can be derived by spatial correlating intensity distributions from a number of different diagnostic volumes with complementary information. An unsupervised approach to MMI volumes segmentation is recommended by many authors. Due to complexity of the data structure, this kind of segmentation is a very challenging task, whose main step is clustering in a multidimensional feature space. The partial volume effect originated by the relatively low resolution of sensors produces borders not strictly defined between tissues. Therefore memberships of voxels in boundary regions are intrinsically fuzzy and computer assisted unsupervised fuzzy clustering methods turns out to be particularly suited to handle the segmentation problem. In this paper a number of clustering methods (HCM, FCM, MEP-FC, PNFCM) have been applied to this task and results have been compared.
منابع مشابه
High Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملP14: Segmentation Brain Tumors of FMRI Images by Gabor Wavelet Transform and Fuzzy Clustering
Today, high mortality rates due to brain tumors require early diagnosis in the early stages to treat and reduce mortality. Therefore, the use of automatic methods will be very useful for accurate examination of tumors. In recent years, the use of FMRI images has been considered for clarity and high quality for the diagnosis of tumor and the exact location of the tumor. In this study, a complete...
متن کاملImage Segmentation: Type–2 Fuzzy Possibilistic C-Mean Clustering Approach
Image segmentation is an essential issue in image description and classification. Currently, in many real applications, segmentation is still mainly manual or strongly supervised by a human expert, which makes it irreproducible and deteriorating. Moreover, there are many uncertainties and vagueness in images, which crisp clustering and even Type-1 fuzzy clustering could not handle. Hence, Type-...
متن کاملUltrasound Cervical Cancer Based Abnormality Segmentation Using Adaptive Fuzzy C-Mean Clustering
Our main goal in this paper is to produce a method for the automated segmentation of an abnormality in a medical image, including acquiring first image data representative of the medical image; locating a suspicious site at which the abnormality may exist; establishing a selection point within the suspicious site; and preprocessing the suspicious site with a constraint function to produce secon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000